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1. Heat kernel hyperuniformity

Let Λ be an invariant (locally square-summable) point process on hyperbolic space

Hn = SO+(1, n)/SO(n)

and let σΛ denote the associated (centered) diffraction measure on (0,+∞) ∪ i[0, ρ) ⊂ C,
where ρ = (n − 1)/2. Recall from the talk that σΛ is the unique positive Radon measure
on (0,+∞) ∪ i[0, ρ) satisfying

Var
(∑

p∈Λ
f(p)

)
=

∫ ∞

0
|f̂(λ)|2dσ(p)Λ (λ) +

∫ ρ

0
|f̂(iλ)|2dσ(c)Λ (λ)

for all compactly supported continuous functions f on Hn, where σ(p)Λ , σ
(c)
Λ are the restric-

tions of σΛ to (0,+∞) and i[0, ρ) respectively.

Assumption: We will assume throughout this note that σ(c)Λ = 0, saving us from any
”super-Poissonian” density fluctuations of the process.

Goal: We want show that such a point process Λ is spectrally hyperuniform, i.e.

σΛ([0, ε]) = o(ε3) ,

if and only if

lim sup
t→+∞

t3/2e2ρ
2tVar

(∑
p∈Λ

ht(p)
)
= 0 , (1.1)

where
ht(x) =

∫ ∞

0
e−t(ρ2+λ2)ϕλ(d(x, o))

dλ

|cn(λ)|2
is the heat kernel on Hn. If Λ satisfies equation (1.1), then we say that it is heat kernel
hyperuniform.

1.1. Spectral hyperuniformity implies heat kernel hyperuniformity

Assume that Λ is spectrally hyperuniform. We will first rewrite the variance of the peri-
odized heat kernel into a suitable form and then formulate Lemma 1.1, where the heart of
the proof lies.

Consider the function ft = eρ
2tht on Hn, so that

f̂t(λ) = eρ
2tĥt(λ) = eρ

2te−t(ρ2+λ2) = e−tλ2
=: ψ(

√
tλ) .

Using the diffraction measure σΛ, we rewrite the heat kernel variance as

t3/2e2ρ
2tVar

(∑
p∈Λ

ht(p)
)
= t3/2Var

(∑
p∈Λ

ft(p)
)
= t3/2

∫ ∞

0
ψ(

√
tλ)2dσΛ(λ) .
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Letting s =
√
t, we have to show that

s3
∫ ∞

0
ψ(sλ)2dσΛ(λ) −→ 0 , s→ +∞ .

Set
φ(r) = −2ψ′(r)ψ(r) = 4r e−2r2

so that
ψ(sλ)2 = s

∫ ∞

λ
φ(sr)dr .

By a standard change of variables,∫ ∞

0
ψ(sλ)2dσΛ(λ) = s

∫ ∞

0

(∫ ∞

λ
φ(sr)dr

)
dσΛ(λ) = s

∫ ∞

0
φ(sr)

(∫ t

0
dσΛ(λ)

)
dr

= s

∫ ∞

0
φ(sr)σΛ([0, r])dr .

This means that it is enough to show that

s4
∫ ∞

0
φ(sr)σΛ([0, r])dr −→ 0 , s→ +∞ .

The core of the proof lies in the following Lemma.

Lemma 1.1 (Björklund). Suppose that there are constants α, β > 0, γ ∈ (0, 1), A,B,C ≥
0 and Borel functions ω, φ : [0,+∞) → [0,∞) satisfying

(i) ρ is increasing and such that

• for every ε > 0 there is an rε ∈ (0, 1) with rε → 0 such that ω(r) ≤ Aεrα for all
r ∈ [0, r1−γ

ε ],

• there is a constant M > 0 such that ω(r) ≤ Brβ for all r ≥M .

(ii) φ is such that

(1)
∫∞
0 rαφ(r)dr < +∞,

(2) Rα/γ
∫∞
R φ(r)dr → 0 as R→ +∞,

(3) Rα−β
∫∞
R rβφ(r)dr → 0 as R→ +∞.

Then
r−(α+1)
ε

∫ ∞

0
φ(r/rε)ω(r)dr −→ 0 , ε→ 0+ .

With this Lemma in mind, we set φ(r) = 4re−2r2 and ω(r) = σΛ([0, r]). By the assumed
spectral hyperuniformity, there is a constant A ≥ 0 and a sequence rε → 0 such that

ω(r) ≤ Aεr3 , r ∈ [0, r1/2ε ] ,

so we can take α = 3, γ = 1/2. Finding constants B, β as in the Lemma above requires
some more work.

Lemma 1.2. Let Λ be an invariant point process on Hn with diffraction σΛ. Then
σΛ([0, R]) ≪ Rn for sufficiently large R > 0.

Remark 1.3. When ω(r) = σ([0, r]) is the diffraction measure of a point process, Lemma
1.1 is applicable for all rank one spaces. In particular, the crucial constants for Euclidean
and hyperbolic space are
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G/K Rn Hn

α n 3
β n n

Thus for hyperbolic space there is a B > 0 and an M > 0 such that ρ(r) ≤ Brn for all
r ≥M , so take β = n.

Modulo the proof of Lemma 1.1, it suffices to verify points (1)-(3) for the function φ(r) =
4re−2r2 .

(1) we have

4

∫ ∞

0
r4e−2r2dr < +∞ .

(2)

R6

∫ ∞

R
4re−2r2dr = 2R6e−2R2 −→ 0 , R→ +∞ .

(3)

R3−n

∫ ∞

R
rne−2r2dr = R4

∫ ∞

1
rne−2R2r2dr −→ 0 , R→ +∞

by dominated convergence.

Letting sε = r−1
ε , then Lemma 1.1 tells us that

s4ε

∫ ∞

0
φ(sεr)σΛ([0, r])dr −→ 0 , ε→ 0+ ,

which is what we wanted to show.

Proof of Lemma 1.1. Let Iε =
∫∞
0 φ(r/rε)ρ(r)dr. Then we use the assumed monotone

growth and estimates on ω to find that

Iε ≤
∫ r1−γ

ε

0
φ(r/rε)Aεr

αdr + ω(M)

∫ M

r1−γ
ε

φ(r/rε)dr +

∫ ∞

M
φ(r/rε)Br

βdr =: I1 + I2 + I3 .

We need to show that Ij = o(rα+1
ε ) for j = 1, 2, 3 as ε→ 0+.

I1 ≤ Aεrα+1
ε

∫ ∞

0
φ(r)rαdr

I2 ≤ φ(M)rε

∫ ∞

r−γ
ε

φ(r)dr

I3 = Brβ+1
ε

∫ ∞

M/rε

φ(r)rβdr .

Dividing by rα+1
ε , we get that

Iε

rα+1
ε

=
I1 + I2 + I3

rα+1
ε

≪ ε+ ω(M) (r−γ
ε )α/γ

∫ ∞

r−γ
ε

φ(r)dr︸ ︷︷ ︸
−→0

+ r−(α−β)
ε

∫ ∞

M/rε

φ(r)rβdr︸ ︷︷ ︸
−→0

.

■

1.2. Heat kernel hyperuniformity implies spectral hyperuniformity

Assume that equation (1.1) holds. We will show that σΛ([0, ε]) = o(ε3) as ε→ 0+.

This is fortunately quite straightforward: Let δt > 0 and bound canonically from above,

Var
(∑

p∈Λ
ht(p)

)
=

∫ ∞

0
|ĥt(λ)|2dσΛ(λ) ≥

∫ δt

0
|ĥt(λ)|2dσΛ(λ) = e−2ρ2t

∫ δt

0
e−2tλ2

dσΛ(λ) .
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Assuming heat kernel hyperuniformity, there is for every ε > 0 a tε > 0 such that

t3/2
∫ δt

0
e−2tλ2

dσΛ(λ) < ε , ∀ t ≥ tε .

In particular,

t3/2e−2tδ2t σΛ([0, δt]) < ε , ∀ t ≥ tε ,

so the question boils down to the following: If we can find δt → 0 as t→ +∞ such that

δ−3
t ≪ t3/2e−2tδ2t , ∀ t ≥ tε , (1.2)

then
σΛ([0, δt])

δ3t
≪ t3/2e−2tδ2t σΛ([0, δt]) < ε , ∀ t ≥ tε ,

as desired.

Finding a solution δt to equation (1.2) is equivalent to 2tδ2t − 3 log(δt) ≤ 3c
2 log(t) for some

c > 0 for all sufficiently large t. As an example, by setting c = 2 we get 2tδ2t ≤ 3 log(tδt),
for which δt = t−1/2 is an example of a solution whenever t ≥ e4/3.
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