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1. HEAT KERNEL HYPERUNIFORMITY

Let A be an invariant (locally square-summable) point process on hyperbolic space
" =S07"(1,n)/SO(n)

and let o5 denote the associated (centered) diffraction measure on (0, +00) U i[0, p) C C,
where p = (n — 1)/2. Recall from the talk that o is the unique positive Radon measure
on (0, +00) U [0, p) satisfying

var(X 1) = [T IR P 00 + [ 1N Par o)

pEA
() (o)

for all compactly supported continuous functions f on H", where oy, 0," are the restric-
tions of o to (0,+00) and [0, p) respectively.
(c)

Assumption: We will assume throughout this note that o,” = 0, saving us from any
“super-Poissonian” density fluctuations of the process.

Goal: We want show that such a point process A is spectrally hyperuniform, i.e.

oa([0,¢]) = o(e?)

if and only if

lim sup %/2e? tVar(th ) =0, (1.1)
t——+o0 peA

where - D\
— —t(p*+A?)
ht(m) /0 € (b’\(d(m’o))]cn()\)\z

is the heat kernel on H". If A satisfies equation (1.1)), then we say that it is heat kernel
hyperuniform.

1.1. Spectral hyperuniformity implies heat kernel hyperuniformity

Assume that A is spectrally hyperuniform. We will first rewrite the variance of the peri-
odized heat kernel into a suitable form and then formulate Lemma where the heart of
the proof lies.

Consider the function f; = ePZtht on H", so that
Fi(A) = e Thy(N) = e” Lo HPP ) — o= — (VAN

Using the diffraction measure o,, we rewrite the heat kernel variance as

£3/2020% Var( 3y ht(p)> = 13/ Var( 3 ft(p)> = 13/ / T (VN 2o ().
0
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Letting s = v/t, we have to show that
53/ Y(sA)?dop(\) — 0, s— +o0.
0

Set ,
o) = 20/ (r)(r) = dr e~
so that

o0

P(sA)? = s//\ (sr)dr.

By a standard change of variables,
t

/0 B(s\)2doa(\) = s /0 ( A go(sr)dr) doa()) = s /O go(sr)( /0 daA(/\))dr
=s /000 o(sr)oa([0,r])dr .
This means that it is enough to show that
st /OOO o(sr)oa([0,7])dr — 0, s — +o0.

The core of the proof lies in the following Lemma.

Lemma 1.1 (Bjorklund). Suppose that there are constants o, 3 > 0, v € (0,1), A, B,C >
0 and Borel functions w,p : [0,+00) — [0,00) satisfying

(i) p is increasing and such that

o for every € > 0 there is an r. € (0,1) with r. — 0 such that w(r) < Aer® for all
rel0,ri ],

e there is a constant M > 0 such that w(r) < Br? for allT > M.
(i) ¢ is such that
(1) fooo r®p(r)dr < 400,
(2) R [ p(r)dr — 0 as R — 400,
(3) R*8 Ir rPp(r)dr — 0 as R — 400.

Then -
r;(o‘+1)/ o(r/re)w(rydr — 0, €—0".
0

With this Lemma in mind, we set () = 4re=2"" and w(r) = o ([0,7]). By the assumed

spectral hyperuniformity, there is a constant A > 0 and a sequence r. — 0 such that
w(r) < Aer®, rel0,r}/?],

so we can take o = 3, 7 = 1/2. Finding constants B, 3 as in the Lemma above requires
some more work.

Lemma 1.2. Let A be an invariant point process on H"™ with diffraction opn. Then
oa([0, R]) < R™ for sufficiently large R > 0.

Remark 1.3. When w(r) = ([0, 7]) is the diffraction measure of a point process, Lemma
[I.T]is applicable for all rank one spaces. In particular, the crucial constants for Euclidean

and hyperbolic space are
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G/K |R™ | H"
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I5] n|n

Thus for hyperbolic space there is a B > 0 and an M > 0 such that p(r) < Br™ for all
r > M, so take B = n.

Modulo the proof of Lemma it suffices to verify points (1)-(3) for the function ¢(r) =
Are=2r”.

(1) we have

o0 2
4/ rte™ " dr < 400.
0

(2)

o0
R6/ dre™ 2" dr = 2R%e2R* 0, R—+o0.
R

o) [e.e]

Rg_”/ e 2 dp = R4/ e 2R g 0, R— 4o
R 1

by dominated convergence.

Letting s. = r=!, then Lemma tells us that
o
sﬁ/ o(ser)on([0,7]))dr — 0, & — 0T,
0

which is what we wanted to show.

Proof of Lemma[Idl Let I. = [;° (r/re)p(r)dr. Then we use the assumed monotone

growth and estimates on w to find that
I. < / o(r/re)Aer®dr + w(M) /1
0 Tz

We need to show that I; = o(r&t!) for j = 1,2,3 as e — 0T

re M

o(r/re)dr + / @(T/TS)BT'BdT =L+ +15.
v M

I < Agrgﬂ/ o(r)redr
0

a+1
€

I. L+1DL+1I;
7”50‘""1 - rgz-i-l

Dividing by r&™*, we get that

<L e+ w(M) (7“5_7)0‘/7/ o(r)dr +r-@P) o(r)yrfdr .

1.2. Heat kernel hyperuniformity implies spectral hyperuniformity

Assume that equation (I.1]) holds. We will show that o4 ([0,¢]) = o(¢?) as ¢ — 0%,

This is fortunately quite straightforward: Let d; > 0 and bound canonically from above,

oo o ) S5 ,
Var(pezj\ht@)) :/0 |he(N)|doa(N) 2/ |ht()\)‘2d0'A(A):e_29t/ e 2V dop (V).

0 0
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Assuming heat kernel hyperuniformity, there is for every ¢ > 0 a t. > 0 such that
6t
t3/2/ e 2V dop(\) <e, Vi>t..
0

In particular,
32725 5, (10,6,]) <&, Vt>t.,
so the question boils down to the following: If we can find d; — 0 as ¢ — +oco such that
578 < 132720 >t (1.2)

then 0.4
“A([&;t]) < 272005, ((0,6)]) <e, Vit>t.,
t
as desired.

Finding a solution &; to equation (L.2)) is equivalent to 2t67 — 3log(6;) < 3¢ log(t) for some
¢ > 0 for all sufficiently large t. As an example, by setting ¢ = 2 we get 2t5? < 3log(td;),

for which §; = t=1/2 is an example of a solution whenever ¢t > e/3.
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